Buscar este blog

viernes, 20 de marzo de 2015

Conjugados, opuestos e inversos de números complejos

Números complejos iguales, conjugados, opuestos e inversos

Gráfica

Números complejos iguales

Dos números complejos son iguales si tienen el mismo módulo y el mismo argumento.
Números complejos iguales

Números complejos conjugados

Dos números complejos son conjugados si tienen el mismo módulo y opuestos sus argumentos.
Números complejos conjugados

Números complejos opuestos

Dos números complejos son opuestos si tienen el mismo módulo y sus argumentos se diferencian en π radianes.
Números complejos opuestos

Números complejos inversos

El inverso de un número complejo no nulo tiene por módulo el inverso del módulo y por argumento su opuesto.
Números complejos inversos

martes, 17 de marzo de 2015

BIOGRAFÍAS DE GAUSS Y ARGAND

Karl Friedrich Gauss

(Brunswick, actual Alemania, 1777 - Gotinga, id., 1855) Matemático, físico y astrónomo alemán. Nacido en el seno de una familia humilde, desde muy temprana edad Karl Friedrich Gauss dio muestras de una prodigiosa capacidad para las matemáticas (según la leyenda, a los tres años interrumpió a su padre cuando estaba ocupado en la contabilidad de su negocio para indicarle un error de cálculo), hasta el punto de ser recomendado al duque de Brunswick por sus profesores de la escuela primaria.

Karl Friedrich Gauss
El duque le proporcionó asistencia financiera en sus estudios secundarios y universitarios, que efectuó en la Universidad de Gotinga entre 1795 y 1798. Su tesis doctoral (1799) versó sobre el teorema fundamental del álgebra (que establece que toda ecuación algebraica de coeficientes complejos tiene soluciones igualmente complejas), que Gauss demostró.
En 1801 Gauss publicó una obra destinada a influir de forma decisiva en la conformación de la matemática del resto del siglo, y particularmente en el ámbito de la teoría de números, las Disquisiciones aritméticas, entre cuyos numerosos hallazgos cabe destacar: la primera prueba de la ley de la reciprocidad cuadrática; una solución algebraica al problema de cómo determinar si un polígono regular de n lados puede ser construido de manera geométrica (sin resolver desde los tiempos de Euclides); un tratamiento exhaustivo de la teoría de los números congruentes; y numerosos resultados con números y funciones de variable compleja (que volvería a tratar en 1831, describiendo el modo exacto de desarrollar una teoría completa sobre los mismos a partir de sus representaciones en el plano x, y) que marcaron el punto de partida de la moderna teoría de los números algebraicos.
Su fama como matemático creció considerablemente ese mismo año, cuando fue capaz de predecir con exactitud el comportamiento orbital del asteroide Ceres, avistado por primera vez pocos meses antes, para lo cual empleó el método de los mínimos cuadrados, desarrollado por él mismo en 1794 y aún hoy día la base computacional de modernas herramientas de estimación astronómica.
En 1807 aceptó el puesto de profesor de astronomía en el Observatorio de Gotinga, cargo en el que permaneció toda su vida. Dos años más tarde, su primera esposa, con quien había contraído matrimonio en 1805, falleció al dar a luz a su tercer hijo; más tarde se casó en segundas nupcias y tuvo tres hijos más. En esos años Gauss maduró sus ideas sobre geometría no euclidiana, esto es, la construcción de una geometría lógicamente coherente que prescindiera del postulado de Euclides de las paralelas; aunque no publicó sus conclusiones, se adelantó en más de treinta años a los trabajos posteriores de Lobachewski y Bolyai.
Alrededor de 1820, ocupado en la correcta determinación matemática de la forma y el tamaño del globo terráqueo, Gauss desarrolló numerosas herramientas para el tratamiento de los datos observacionales, entre las cuales destaca la curva de distribución de errores que lleva su nombre, conocida también con el apelativo de distribución normal y que constituye uno de los pilares de la estadística.
Otros resultados asociados a su interés por la geodesia son la invención del heliotropo, y, en el campo de la matemática pura, sus ideas sobre el estudio de las características de las superficies curvas que, explicitadas en su obra Disquisitiones generales circa superficies curvas (1828), sentaron las bases de la moderna geometría diferencial. También mereció su atención el fenómeno del magnetismo, que culminó con la instalación del primer telégrafo eléctrico (1833). Íntimamente relacionados con sus investigaciones sobre dicha materia fueron los principios de la teoría matemática del potencial, que publicó en 1840.
Otras áreas de la física que Gauss estudió fueron la mecánica, la acústica, la capilaridad y, muy especialmente, la óptica, disciplina sobre la que publicó el tratadoInvestigaciones dióptricas (1841), en las cuales demostró que un sistema de lentes cualquiera es siempre reducible a una sola lente con las características adecuadas. Fue tal vez la última aportación fundamental de Karl Friedrich Gauss, un científico cuya profundidad de análisis, amplitud de intereses y rigor de tratamiento le merecieron en vida el apelativo de «príncipe de los matemáticos».

JEAN-ROBERT ARGAND.

Jean-Robert Argand

Jean Robert Argand (18 de julio de 1768 - 13 de agosto de 1822) fue un contable y matemático suizo que describió en 1806 la representación geométrica de los números complejos, creando lo que se conoce como plano de Argand.


Plano complejo.

En matemáticas, el plano complejo es una forma de visualizar el espacio de los números complejos. Puede entenderse como un plano cartesiano modificado, en el que la parte real está representada en el eje x y la parte imaginaria en el eje y. El eje x también recibe el nombre de eje real y el y eje imaginario

Un número puede ser visualmente representado por un par de números formando un vector en un diagrama llamado diagrama de Argand
El plano complejo a veces recibe el nombre de plano de Argand a causa de su uso en diagramas de Argand. Su creación se atribuye aJean-Robert Argand, aunque fue inicialmente descrito por el encuestador y matemático Noruego-danés Caspar Wessel.
El concepto de plano complejo permite interpretar geométricamentelos números complejos. La suma de números complejos se puede relacionar con la suma con vectores, y la multiplicación de números complejos puede expresarse simplemente usando coordenadas polares, donde la magnitud del producto es el producto de las magnitudes de los términos, y el ángulo contado desde el eje real del producto es la suma de los ángulos de los términos.
Los diagramas de Argand se usan frecuentemente para mostrar las posiciones de los polos y los ceros de una función en el plano complejo.
El análisis complejo, la teoría de las funciones complejas, es una de las áreas más ricas de la matemática, que encuentra aplicación en muchas otras áras de la matemática así como en físicaelectrónica y muchos otros campos.

Uso del plano complejo en teoría de control .


En teoría de control, uno de los usos del plano complejo se conoce como el 'plano s'. Se usa para visualizar las raíces de la ecuación describiendo la conducta de un sistema (la ecuación característica) gráficamente. La ecuación se expresa normalmente como un polinomio de parámetro 's' de la transformada de Laplace, y de ahí el nombre de plano 's'.
Además, otro uso del plano 's' es el criterio de estabilidad de Nyquist, que es un principio geométrico que permite determinar la estabilidad de un sistema de control mediante la inspección del diagrama de Nyquist de la respuesta de fase de la función de transferencia en el plano complejo.
El plano z es una versión de tiempo discreto del plano s, donde se usa la transformada Z en lugar de la de Laplace.

lunes, 16 de marzo de 2015

VIDEO DE NUMEROS IMAGINARIOS


Números imaginarios

Números imaginarios

Definición

Un número que cuando se eleva al cuadrado (se multiplica por sí mismo) da un resultado negativo.

Intentos

Vamos a probar a elevar algunos números al cuadrado a ver si podemos sacar un resultado negativo:
2 × 2 = 4

(-2) × (-2) = 4 (porque negativo por negativo da positivo)

0 × 0 = 0

0.1 × 0.1 = 0.01
¡No hay suerte! Siempre positivo, o cero.
Eso es porque estamos calculando el cuadrado de números reales.
Pero imagina que hay un número (vamos a llamarlo i de imaginario) que cumpliera esto:
i × i = -1
¿Sería útil, qué podríamos hacer con él?
Bueno, haciendo la raíz cuadrada de los dos lados tendríamos un valor para la raíz cuadrada de -1:
Y eso es muy útil... simplemente aceptando que exista i podemos resolver muchos problemas donde nos hace falta la raíz cuadrada de un número negativo.
Ejemplo: ¿cuál es la raíz cuadrada de -9?
Respuesta: √(-9) = √(9 × -1) = √(9) × √(-1) = 3 × √(-1) = 3i
Mientras tengamos esa pequeña "i" ahí para recordarnos que hay que multiplicar por √-1 no tendremos problemas con seguir calculando para llegar a la solución.

Unidad imaginaria

La "unidad" imaginaria (el equivalente al 1 de los números reales) es √(-1) (la raíz cuadrada de menos uno).
En matemáticas se usa i (de imaginario) pero en electrónica se usa j (porque "i" ya es la corriente, y la letra siguiente después de la i es la j).

Ejemplos de números imaginarios

i 12.38i -i 3i/4 0.01i -i/2

Los números imaginarios no son "imaginarios"

De hecho hubo un tiempo en que se pensó que los números imaginarios eran imposibles, y por eso se llamaban "imaginarios" (a modo de broma).
Pero después hubo gente que investigó más y descubrió que son útiles e importantes porque rellenan un hueco en matemáticas... pero el nombre de "imaginario" se mantuvo.

Utilidad

Aquí tienes dos ejemplos en los que son útiles:

Electricidad


  La CA o AC (corriente alterna) cambia de positivo a negativo siguiendo una onda sinuoidal. Si combinas dos corrientes alternas puede que no coincidan bien, y puede ser muy difícil calcular la nueva corriente.
Pero usar números reales e imaginarios juntos hace mucho más fáciles los cálculos.
    Y el resultado puede ser corriente "imaginaria", ¡pero puede hacerte daño igual!

Ecuación cuadrática

Ecuación cuadrática Una ecuación cuadrática puede dar resultados con números imaginarios...
   
... pero quizás después de más cálculos el número "i" se cancela (o se convierte en real porque está al cuadrado), dando una respuesta que es real.

Propiedad interesante

La unidad imaginaria, i, tiene una propiedad interesante. "Da la vuelta" pasando por 4 valores diferentes cuando la multiplicas:
So, i × i = -1, ... después -1 × i = -i, ... después -i × i = 1, ... después 1 × i = i (¡de vuelta i!)

Conclusión

La unidad imaginaria, i, es igual a la raíz cuadrada de menos 1
Los números imaginarios no son "imaginarios", son de verdad y son útiles, ¡y puedes tener que usarlos algún día!

jueves, 5 de marzo de 2015

Video de Resolución de inecuaciones


INECUACIONES




INECUACIONES

Inecuación de primer grado simple

Una inecuación es una expresión algebraica que consta de dos miembros separados por una desigualdad. La desigualdad puede ser < , ≤ , > , ≥.
Resolver una inecuación consiste en encontrar el valor o valores que la verifican, al contrario de las ecuaciones de primer grado, las inecuaciones tienen infinitas soluciones agrupadas en un conjunto.
El método de resolución de inecuaciones de primer grado se similar a la resolución de ecuaciones salvo por el hecho de que si multiplicamos los dos miembros de una inecuación por un número negativo cambia el sentido de la inecuación.


Resolver las siguientes inecuaciones
Soluciones:
1inecuación
solución
solución
solución
solución gráfica
(1, ∞)
2inecuación
mcm
solución
solución
solución
solución
solución gráfica
solución