Buscar este blog

miércoles, 10 de septiembre de 2014

Video de la Teoría de Conjuntos


Biografía de Leonhard Euler

rgo, 1783) Matemático suizo. Las facultades que desde temprana edad demostró para las matemáticas pronto le ganaron la estima del patriarca de los Bernoulli, Johann, uno de los más eminentes matemáticos de su tiempo y profesor de Euler en la Universidad de Basilea. Tras graduarse en dicha institución en 1723, cuatro años más tarde fue invitado personalmente por Catalina I para convertirse en asociado de la Academia de Ciencias de San Petersburgo, donde coincidió con otro miembro de la familia Bernoulli, Daniel, a quien en 1733 relevó en la cátedra de matemáticas.

Leonhard Euler
A causa de su extrema dedicación al trabajo, dos años más tarde perdió la visión del ojo derecho, hecho que no afectó ni a la calidad ni al número de sus hallazgos. Hasta 1741, año en que por invitación de Federico el Grande se trasladó a la Academia de Berlín, refinó los métodos y las formas del cálculo integral (no sólo gracias a resultados novedosos, sino también a un cambio en los habituales métodos de demostración geométricos, que sustituyó por métodos algebraicos), que convirtió en una herramienta de fácil aplicación a problemas de física. Con ello configuró en buena parte las matemáticas aplicadas de la centuria siguiente (a las que contribuiría luego con otros resultados destacados en el campo de la teoría de las ecuaciones diferenciales lineales), además de desarrollar la teoría de las funciones trigonométricas y logarítmicas (introduciendo de paso la notación e para definir la base de los logaritmos naturales).
En 1748 publicó la obra Introductio in analysim infinitorum, en la que expuso el concepto de función en el marco del análisis matemático, campo en el que así mismo contribuyó de forma decisiva con resultados como el teorema sobre las funciones homogéneas y la teoría de la convergencia. En el ámbito de la geometría desarrolló conceptos básicos como los del ortocentro, el circuncentro y el baricentro de un triángulo, y revolucionó el tratamiento de las funciones trigonométricas al adoptar ratios numéricos y relacionarlos con los números complejos mediante la denominada identidad de Euler; a él se debe la moderna tendencia a representar cuestiones matemáticas y físicas en términos aritméticos.

En el terreno del álgebra obtuvo así mismo resultados destacados, como el de la reducción de una ecuación cúbica a una bicuadrada y el de la determinación de la constante que lleva su nombre. A lo largo de sus innumerables obras, tratados y publicaciones introdujo gran número de nuevas técnicas y contribuyó sustancialmente a la moderna notación matemática de conceptos como función, suma de los divisores de un número y expresión del número imaginario raíz de menos uno. También se ocupó de la teoría de números, campo en el cual su mayor aportación fue la ley de la reciprocidad cuadrática, enunciada en 1783.
A raíz de ciertas tensiones con su patrón Federico el Grande, regresó nuevamente a Rusia en 1766, donde al poco de llegar perdió la visión del otro ojo. A pesar de ello, su memoria privilegiada y su prodigiosa capacidad para el tratamiento computacional de los problemas le permitieron continuar su actividad científica; así, entre 1768 y 1772 escribió sus Lettres à une princesse d'Allemagne, en las que expuso concisa y claramente los principios básicos de la mecánica, la óptica, la acústica y la astrofísica de su tiempo.
De sus trabajos sobre mecánica destacan, entre los dedicados a la mecánica de fluidos, la formulación de las ecuaciones que rigen su movimiento y su estudio sobre la presión de una corriente líquida, y, en relación a la mecánica celeste, el desarrollo de una solución parcial al problema de los tres cuerpos -resultado de su interés por perfeccionar la teoría del movimiento lunar-, así como la determinación precisa del centro de las órbitas elípticas planetarias, que identificó con el centro de la masa solar. Tras su muerte, se inició un ambicioso proyecto para publicar la totalidad de su obra científica, compuesta por más de ochocientos tratados, lo cual lo convierte en el matemático más prolífico de la historia.

Biografía de John Venn

John Venn

John Venn
John Venn.jpg
Nacimiento4 de agosto de 1834
Kingston upon HullYorkshire,Inglaterra
Fallecimiento4 de abril de 1923, 88 años
CambridgeInglaterra
NacionalidadBandera de Inglaterra inglés
Alma máterUniversidad de Cambridge
OcupaciónMatemáticaLógica y Psicología
Firma de John Venn
Diagrama de Vennen un ventanal del Colegio de Gonville y Gaius, conmemorando a su creador
El Edificio de Venn creado en la Universidad de Hull en conmemoración a John Venn
John Venn 1 2 (Drypool4 de agosto de 1834 - Cambridge4 de abril de 1923), fue un matemático y lógico británico miembro de la Real Sociedad de Londres. Destacó por sus investigaciones en lógica inductiva. Es especialmente conocido por su método de representación gráfica de proposiciones (según su cualidad y cantidad) y silogismos conocido como los diagramas de Venn. Estos permiten una comprobación de la verdad o falsedad de un silogismo. Posteriormente fueron utilizados para mostrar visualmente las operaciones más elementales de la teoría de conjuntos.3

Índice

  [mostrar

Biografía[editar]

John Venn nació en 1834 en Hull, Yorkshire. Su madre, Martha Sykes, provenía de Swanland, cerca de Hull, y murió mientras John era aún muy pequeño. Su padre era el reverendo Henry Venn, quien en la época en que nació John era el rector de la parroquia de Drypool, cerca de Hull. Henry Venn venía de una familia distinguida. Su propio padre, el abuelo de John, el Reverendo John Venn, había sido rector de Clapham en el sur de Londres. Era el líder de la Secta Clapham, un grupo de cristianos evangélicos que se reunían en su iglesia y que promovían la reforma de la prisión y la abolición de la esclavitud y de los deportes crueles.
El padre de John Venn (Henry) jugó también un papel prominente en el movimiento evangélico. La Society for Missions in Africa and the East (Sociedad de las Misiones en África y Oriente) fue fundada por la clerecía evangélica de la Iglesia de Inglaterra en 1799, y en 1812 fue rebautizada como la Church Missionary Society for Africa and the East (Sociedad de la Iglesia Misionaria de África y Oriente). Henry Venn fue secretario de la Sociedad desde 1841. Se mudó a Highgate, cerca de Londres, con el fin de llevar a cabo sus deberes. Allí mantuvo su posición hasta su muerte.
John Venn fue criado de manera estricta. Se esperaba que siguiera la tradición familiar como ministro cristiano. Después de pasar un tiempo en la Escuela de Highgate, entró en el Colegio de Gonville y Caius, en Cambridge, en 1853. Se graduó en 1857 y pronto fue elegido profesor adjunto de la escuela. Fue ordenado diácono de Ely en 1858 y se convirtió en reverendo de la iglesia en 1859. En 1862 regresó a Cambridge como profesor de ciencias morales.
El área de mayor interés para Venn era la lógica, y publicó tres textos sobre el tema. Escribió The Logic of Chance (Lógica del Azar), que introdujo la teoría de frecuencia de la probabilidad, en 1866, Symbolic Logic (Lógica Simbólica), que presentaba los diagramas de Venn, en 1881, y The Principles of Empirical Logic (Los Principios de la Lógica Empírica), en 1889.
En 1883, Venn fue elegido miembro de la Royal Society. En 1897, escribió una historia de su vida universitaria, llamada The Biographical History of Gonville and Caius College, 1349–1897. Comenzó una compilación de notas biográficas de alumnos de la Universidad de Cambridge, trabajo que continuó su hijo John Archibald Venn (1883-1958), publicado como Alumni Cantabrigienses, en 10 volúmenes, entre 1922 y 1953.
Falleció en 1923, a la edad de 88 años, en Cambridge, y fue sepultado en el cercano cementerio de la Iglesia Trumpington.

Biografía de George Cantor


Georg Cantor
Georg Cantor
(1845/03/03 - 1918/01/06)

Georg Cantor 

Matemático ruso 



Nació el 3 de marzo de 1845 en San Petersburgo (Rusia). Descendiente de judíos, fue hijo mayor del próspero comerciante Georg Waldemar Cantor y de su mujer María Bohm. 

Tuvo un preceptor particular, y después siguió un curso en la escuela elemental de San Petersburgo. Cuando la familia se trasladó a Alemania, asistió a algunas escuelas privadas de Francfort y de Damstandt primero, ingresando luego en el Instituto de Wiesbaden en 1860, cuando tenía 15 años. Comenzó sus estudios universitarios en Zurich, en 1862, pero pasó a la Universidad de Berlín al siguiente año, después de la muerte de su padre. En Berlín se especializó en MatemáticasFilosofía y Física. Trabajó como profesoren la Universidad de Halle, obteniendo su Cátedra en 1872. 

Sus primeros trabajos con las series de Fourier lo llevaron al desarrollo de una teoría de los números irracionales. Además formuló la teoría de conjuntos, sobre la que se basa la matemática moderna. Esta teoría extiende el concepto de número al introducir los números infinitos o números transfinitos. El estudio de los infinitos por parte de Cantor fue considerado por Kronecker con una locura matemática. Recibió múltiples honores y su obra había logrado ser reconocida.

Georg Cantor falleció en Halle (ciudad del centro de Alemania), el 6 de enero de 1918. 

Teorí de conjunto

Conjunto


Los diversos polígonos en la imagenconstituyen un conjunto. Algunos de los elementos del conjunto, además de ser polígonos son regulares. La colección de estos últimos —los polígonos regulares en la imagen— es otro conjunto, en particular, un subconjunto del primero.
En matemáticas, un conjunto es una agrupación de objetos considerada como un objeto en sí. Los objetos del conjunto pueden ser cualquier cosa: personas,númeroscoloresletrasfiguras, etc. Cada uno de los objetos en la colección es un elemento o miembro del conjunto.1 Por ejemplo, el conjunto de los colores delarcoíris es:
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser unnúmero primo, el conjunto de los números primos es:
P = {2, 3, 5, 7, 11, 13, ...}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto puede escribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo:
S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Amarillo, Naranja, Rojo, Verde, Violeta, Añil, Azul}
Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el conjunto de los planetas en el Sistema Solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
Los conjuntos son un concepto primitivo, en el sentido de que no es posible definirlos en términos de nociones más elementales, por lo que su estudio puede realizarse de manera informal, apelando a la intuición y a la lógica. Por otro lado, son el concepto fundamental de la matemática: mediante ellos puede formularse el resto de objetos matemáticos, como los números y lasfunciones, entre otros. Su estudio detallado requiere pues la introducción de axiomas y conduce a la teoría de conjuntos.

Historia[editar]

El concepto de conjunto como objeto abstracto no comenzó a emplearse en matemáticas hasta el siglo XIX, a medida que se despejaban las dudas sobre la noción de infinito.2 Los trabajos de Bernard Bolzano yBernhard Riemann ya contenían ideas relacionadas con una visión conjuntista de la matemática. Las contribuciones de Richard Dedekind al álgebra estaban formuladas en términos claramente conjuntistas, que aún prevalecen en la matemática moderna: relaciones de equivalenciaparticioneshomomorfismos, etc., y él mismo explicitó las hipótesis y operaciones relativas a conjuntos que necesitó en su trabajo.
La teoría de conjuntos como disciplina independiente se atribuye usualmente a Georg Cantor. Comenzando con sus investigaciones sobre conjuntos numéricos, desarrolló un estudio sobre los conjuntos infinitos y sus propiedades. La influencia de Dedekind y Cantor empezó a ser determinante a finales del siglo XIX, en el proceso de «axiomatización» de la matemática, en el que todos los objetos matemáticos, como los números, las funciones y las diversas estructuras, fueron construidos con base en los conjuntos.

Definición[editar]

[...] entiendo en general por variedad o conjunto toda multiplicidad que puede ser pensada como unidad, esto es, toda colección de elementos determinados que pueden ser unidos en una totalidad mediante una ley.
Un conjunto es una colección bien definida de objetos, entendiendo que dichos objetos pueden ser cualquier cosa: números, personas, letras, otros conjuntos, etc. Algunos ejemplos son:
A es el conjunto de los números naturales menores que 5.
B es el conjunto de los colores verde, blanco y rojo.
C es el conjunto de las letras aeio y u.
D es el conjunto de los palos de la baraja francesa.
Los conjuntos se denotan habitualmente por letras mayúsculas. Los objetos que componen el conjunto se llaman elementos o miembros. Se dice que «pertenecen» al conjunto y se denota mediante el símbolo :n 1 la expresión a  A se lee entonces como «a está en A», «a pertenece a A», «A contiene a a», etc. Para la noción contraria se usa el símbolo . Por ejemplo:
 A , ♠  D
amarillo  B C

Notación[editar]


Relación de pertenencia. El conjunto A es un conjunto de polígonos. En la imagen, algunas de las figuras pertenecen a dicho conjunto, pero otras no.
Existen varias maneras de referirse a un conjunto. En el ejemplo anterior, para los conjuntos A y D se usa una definición intensiva o por comprensión, donde se especifica una propiedad que todos sus elementos poseen. Sin embargo, para los conjuntos B y C se usa una definición extensiva, listando todos sus elementos explícitamente.
Es habitual usar llaves para escribir los elementos de un conjunto, de modo que:
B = {verde, blanco, rojo}
C = {a, e, i, o, u}
Esta notación mediante llaves también se utiliza cuando los conjuntos se especifican de forma intensiva mediante una propiedad:
A = {Números naturales menores que 5}
D = {Palos de la baraja francesa}
Otra notación habitual para denotar por comprensión es:
A = {m : m es un número natural, y 1 ≤ m ≤ 5}
D = {p : p es un palo de la baraja francesa}
F = {n2 : n es un entero y 1 ≤ n ≤ 10},
En estas expresiones los dos puntos («:») significan «tal que». Así, el conjunto F es el conjunto de «los números de la forma n2 tal que n es un número natural entre 1 y 10 (ambos inclusive)», o sea, el conjunto de los diez primeros cuadrados de números naturales. En lugar de los dos puntos se utiliza también la barra vertical («|») u oblicua «/» .

Igualdad de conjuntos[editar]


Conjunto de personas. El conjunto de «personas» mostrado en la imagen, A, tiene 8miembros. Este conjunto puede representarse mediante llaves o mediante un diagrama de Venn. El orden de las personas en A es irrelevante.
Un conjunto está totalmente determinado por sus elementos. Por ello, la igualdad de conjuntos se establece como:
Propiedad de la extensionalidad
Dos conjuntos A y B que tengan los mismos elementos son el mismo conjunto, A = B.
Esta propiedad tiene varias consecuencias. Un mismo conjunto puede especificarse de muchas maneras distintas, en particular extensivas o intensivas. Por ejemplo, el conjunto A de los números naturales menores que 5 es el mismo conjunto que A′, el conjunto de los números 1, 2, 3 y 4. También:
B = {verde, blanco, rojo} = {colores de la bandera de México}
C = {a, e, i, o, u} = {vocales del español}
D = {Palos de la baraja francesa} = {♠, ♣, ♥, ♦}
El orden en el que se precisan los elementos tampoco se tiene en cuenta para comparar dos conjuntos:
B = {verde, blanco, rojo} = {rojo, verde, blanco}
C = {a, e, i, o, u} = {e, i, u, a, o}
Además, un conjunto no puede tener elementos «repetidos», ya que un objeto solo puede o bien ser un elemento de dicho conjunto o no serlo. Se da entonces que, por ejemplo:
{1, 2} = {1, 2, 1}
En ausencia de alguna característica adicional que distinga los «1» repetidos, lo único que puede decirse del conjunto de la derecha es que «1» es uno de sus elementos.

Conjunto vacío[editar]

El conjunto que no contiene ningún elemento se llama el conjunto vacío y se denota por  o simplemente {}. Existe un único conjunto vacío, ya que lo único que distingue a un conjunto son sus elementos.

Subconjuntos[editar]


Subconjunto. B es un subconjunto de A (en particular un subconjunto propio).
Un subconjunto A de un conjunto B, es un conjunto que contiene algunos de los elementos de B (o quizá todos):
Un conjunto A es un subconjunto del conjunto B si cada elemento de A es a su vez un elemento de B.
Cuando A es un subconjunto de B, se denota como A  B y se dice que «A está contenido en B». También puede escribirse B  A, y decirse que B es unsuperconjunto de A y también «B contiene a A» o «B incluye a A».
Todo conjunto A es un subconjunto de sí mismo, ya que siempre se cumple que «cada elemento de A es a su vez un elemento de A». Es habitual establecer una distinción más fina mediante el concepto de subconjunto propioA es un subconjunto propio de B si es un subconjunto de B pero no es igual a B. Se denota comoA  B, es decir: A  B pero A ≠ B (y equivalentemente, para un superconjunto propio, B  A).n 2
Ejemplos.
El «conjunto de todos los hombres» es un subconjunto propio del «conjunto de todas las personas».
{1, 3}  {1, 2, 3, 4}
{1, 2, 3, 4}  {1, 2, 3, 4}

Conjuntos disjuntos[editar]

Dos conjuntos A y B son disjuntos si no tienen ningún elemento en común. Por ejemplo, los conjuntos de los números racionales y los números irracionales son disjuntos: no hay ningún número que sea a la vez racional e irracional. La intersección de dos conjuntos disjuntos es el conjunto vacío.

Cardinalidad[editar]

Los conjuntos pueden ser finitos o infinitos. En el caso de un conjunto finito se pueden contar los elementos del conjunto:
El número de elementos de un conjunto finito es su cardinal.
El cardinal se denota por |A|card(A) o #A. Así, en los ejemplos anteriores, se tiene que |A| = 4 (cuatro números), |B| = 3 (tres colores) y |F| = 10 (diez cuadrados). El único conjunto cuyo cardinal es 0 es el conjunto vacío.
En un conjunto infinito no hay un número finito de elementos. Es el caso por ejemplo de los números naturalesN = {1, 2, 3, ...}. Sin embargo, existe una manera de comparar conjuntos infinitos entre sí, y se obtiene que existen conjuntos infinitos «más grandes» que otros. El «número de elementos» de un conjunto infinito es un número transfinito.

Operaciones con conjuntos[editar]

Operaciones con conjuntos
Unión
Unión
Intersección
Intersección
Diferencia
Diferencia
Complemento
Complemento
Diferencia simétrica
Diferencia simétrica
Existen varias operaciones básicas que pueden realizarse para, partiendo de ciertos conjuntos dados, obtener nuevos conjuntos:
  • Unión: (símbolo ) La unión de dos conjuntos A y B, que se representa como A  B, es el conjunto de todos los elementos que pertenecen al menos a uno de los conjuntos A y B.
  • Intersección: (símbolo ) La intersección de dos conjuntos A y B es el conjunto A  B de los elementos comunes a A y B.
  • Diferencia: (símbolo \) La diferencia del conjunto A con B es el conjunto A \ B que resulta de eliminar de A cualquier elemento que esté en B.
  • Complemento: El complemento de un conjunto A es el conjunto A que contiene todos los elementos que no pertenecen a A, respecto a un conjunto U que lo contiene.
  • Diferencia simétrica: (símbolo Δ) La diferencia simétrica de dos conjuntos A y B es el conjunto A Δ B con todos los elementos que pertenecen, o bien a A, o bien a B, pero no a ambos a la vez.
  • Producto cartesiano: (símbolo ×) El producto cartesiano de dos conjuntos A y B es el conjunto A × B de todos los pares ordenados (ab) formados con un primer elemento aperteneciente a A, y un segundo elemento b perteneciente a B.
Ejemplos
  • {1, a, 0}  {2, b} = {2, b, 1, a, 0}
  • {5, z, ♠}  {♠, a} = {♠}
  • {5, z, ♠} \ {♠, a} = {5, z}
  • {♠, 5} Δ {8, #, ♠} = {5, #, 8}
  • {1, a, 0} × {2, b} = {(1, 2), (1, b), (a, 2), (ab), (0, 2), (0, b)}

Véase también[editar]